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A special characteristic of the behavior of  viscoelastic materials is their capacity for dissipation of a considerable 
part of  the mechanical energy supplied and a considerable dependence of their physicomechanical properties on the tem- 
perature. The effect of  thermomechanical connectedness comes out most clearly in the process of  long-term periodic de- 
formations. The present article, on the basis of the determining equations of the thermomechanical theory of  viscoelasticity 
[ 1 ], gives an approximate statement of the forced vibrations of  nonlinear viscoelastic bodies. With the framework of  this 
statement, an investigation is made of some thermomechanical effects due to dissipation, as well as to the dependence of 
the properties of  the material on the temperature and the amplitude of  the deformation. 

1. In accordance with [2, 3], the determining equations of a broad class of media are connected with the assignment 
of certain functions (functionals) of  state, e.g., the Helmholtz specific free energy ~. From the point  of view of the possi- 
bilities of  adequate modeling of  the medium and of  the relative simplicity of the experimental program, theories based on 
a single-integral representation of the assigned functions have a definite advantage. For  so-called generalized thermorheo- 
logically simple materials [ 1 ], the principal determining assumption has the form 

q ) = ~ ( E , T ) +  j' N(Ed, Te, E,T,~)a[A(~)]d~,  (1.1) 

here 

Here E --  (l/2)[VU -}- (VU) r ]  

(A(T)) = (T(~), E(~), E ( z ) , . . . ,  

duced time, determined by the relationship 

N(O, O, E, T, ~ )=  O. 
is an infinitesimal deformation;  T is the absolute temperature; ~ is the equilibrium energy; 
(n) 
E(~)) is a set of  arguments; E d = E(r  ) - E are difference histories; ~" is the difference re- 

( t , ~ )  t 

(~, ~') = ~ a [A (z)] dz, ~ = ~-- ~' = J a [A (z)] dz, 
0 1: 

(a > 0 is a scalar function). 

The application of standard thermodynamic formalism to (1.1) leads to equations for the stress S, the specific entropy 
~?, and the internal dissipation a 

s = + S - -  N d) (r)  a tA e , ,  
t o _ ~  

t 

,n = - - f - (r )  IA (1 .2 )  
- - t o  

t 

Tci=--a[A( t ) ]  ~ N~(r)a[A('Q]dx,  a>~O, 

where p is the density; ( ),x denotes a partial derivative with respect to X. 

We take the equations of  motion and energy in the form 

div S + pb = Off, 

- - d i v  h + pr + pT<~ = pT~, (1.3) 

where b is the vector of  the mass forces; h is the heat flux; r is the specific heat source. Relationships (1.2), (1.3), supple- 
mented by the equations for E and h, form a closed system of  equations of  nonlinear viscoelasticity. 

2. We assume that, up to the moment  r = 0, the body was in an isothermal natural state, while, with r > 0, it was 
subjected to harmonic perturbat ion with the frequency co. To construct an approximate theory of  the therm0mechanical 
behavior of  bodies we assume that the temperature changes only slightly after a cycle of vibrations, that the duration of the 
transitional process of  not  fully established vibrations is small, and that  the amplitudes of the modes of  fully established 
vibrations with frequencies differing from co are small. These hypotheses make it possible to approximately replace the 
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values T, ~/, To, h, and a by values averaged over a period 
~+~I~ 

(r, % r~,  h, ~, ~) = g r  ~ j (r ,  n, r~,  h, ,', ~) d,., (2.1) 

and to represent the variables u, E, S, and b in form of  the sum Of averaged and oscillating components 

u.(x., ?) = u(x,  "c) q- Re [u(x, x ) o ~  l, (2.2) 

where ~ '= u 1 + iu 2 , . . . are complex amplitudes. After substitution of  formulas (2.1), (2.2) into the system (1.2). (1.3), 

we use the procedure of  averaging for an approximate separation of the system into equations fox the complex amplitudes 
and the averaged variables. I f  we are interested in the self-heating temperature,  the variables if, E,  and S can be discarded; 
then, the starting system of  integrodifferential equations is reduced to a system of  differential equations, including the 
equations of mot ion and energy 

determining the equations 

div ~ q- p'h q-po~h~ = 0; (2.3) 

d i v h  q- pT- q- D = pT~I, (2.4) 

= gtffl ;  (2.5) 

ff = --k(T)VT, (2.6) 

to which must be added a relationship for E, as well as appropsriate boundary and initial (for T-(r)) conditions, where k is 

the tensor of  the thermal conductivity;  V is a nabla operator;  G = G'  + iG" is a complex modulus; D is an averaged dissipa- 
tive function, determined by the relationships 

'~'~ (~)[ eos0~]  = [a'tEd--a"tE~l] 
z J k - -  sin o~ .l [G'[E~] + G ' I g x ]  ] '  

0 

B --- p-T~ ----- (~a/2){G"[Etl .Et  q- G"IEJ.EJ, ~ = E~ + ~E,, 

where 

G '( ' ') = G'('r)(T, m/a, El, E~); G[AI = GijhtA'~z; G[A t . B  = GijkiAkzB,l.  

In distinction from the theory of thermorheologically simple materials, the complex modulus in (2.5) depends on the ampli- 
tude of the deformation;  this dependence can either be explicit, or through the function a .  

Using representations of the type of  (1.1) for the Gibbs specific free energy pg = SE - pqJ, we can construct the 
relationships of the thermomechanical theory in terms of  the creep. 

3. Using the theory set forth above and its simplified variants, it is possible to investigate a broad range of therrno- 
mechanical phenomena, of  which the most interesting is the phenomenon of  thermal instability with cyclic loading. By 
thermal instability there is understood a sharp unbounded rise in the temperature of the body with the time in the case of 
an increase in the critical value X, of  some parameter  of  the loading X. In a quasistatic statement, this phenomenon was 
studied in [4]. 

Taking account of the forces of inertia and the amplitude dependence of the complex modulus can lead to 
qualitatively new thermomechanical effects. Let us first consider the problem of the dynamic behavior of  a beam made of 
a thermorheologically simple material with properties not  depending on the amplitude. I t  is postulated that the stresses 
s o cos cot are given at the ends of the beam. 

The lateral surface and the end of the beam x = 0 are heat  insulated, while the end x = l is maintained at the teni- 
perature T o = const. Using the approximation for the complex Young modulus [5] 

E * - t  = (cl - -  ~c2)o~(T - -  Tx)~, 

after the introduct ion of  dimensionless quantities, we obtain the equations of motion (2.3) in terms of the stresses 

n 

Px q- (t  q- O) v (bxpl q- b2P2) ~- O, p~ q- (t q- O) v (btp2 - -  b2px) = O, (3.1) 

the steady-state equation of energy (2.4) 

and the boundary conditions 

o" + b~. (i + o)' (p; + pD = o 

Pl = P0, P~ = 0, 0' = 0 with ~ = 0, 
Pl = Po, P., = O, 0 ---- 0 w i t h  ~ = I, 

(3.2) 

(3.3) 
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where P0.1,~ = ~so.a,~; "~ = s l  + is~ is the ampli tude of  the axial stress; o~ = ( 2 k p ~ T ~ ) - ~ / ~ ;  0 = ~T  - -  Toy/T~; T~ = 

T O - -  T1; ~ = x / l ;  bl ,~ ~ cl,2P12O~+gT~2 ; k is the thermal conduct iv i ty ;  cl,  2, t3, % T~ are constants  of  the material. For  

solut ion of  the problem we use a difference approach, proposed in [6]. The interval 0 ~< ~ ~< 1 is divided in to  N sections 

by the points  ~j = jh (j = 0, 1, ..., N). After  the in t roduc t ion  of  a difference approximat ion of  the derivatives with an 

accuracy up to 0(ha),  the boundary-value problem (3.1)-(3.3) is reduced to a system of  3N - 3 nonl inear  algebraic equat ions 

with respect to p~,~(~) (j = 1, 2 . . . . .  N - -  t) ,  0(~j) (] = 0, 2, 3 . . . .  N - -  1) , which is solved by the method  of  steepest 

descent. To  determine the critical thermal state, we investigate the dependence of the parameter  

~=(2k! q t ~  ~.+~r~ -1 ) ~/~ s o 
1 

on the maximal  temperature  along the coordinate  0 0 = 0(0), where 0~o = (~" /c lPo l2T~)  2+~ is the first natural  f requency of 

the longi tudinal  vibrat ions of an elastic beam. The greatest value on the curve of X = X(O o) is the critical value X, of  the 

parameter  X. We find the dependence MO o) by solut ion of  the above algebraic system, in which we assign the values of  

0 o, and X is regarded as the sought parameter.  

The numerical  results were obta ined for a beam made out  of  a typical viscoelastic material  with the following data 

[5]: cl = 4 .43 . t0 -14m2/N;v~ = 1.56"10 -~i  m2 /N;  P ~ 12t4 kg/m 3; [5 = - -0 .2 t4 ;  ? 3,2t :  k = 0.15 W / m ' d e g ;  
To t8.3~ T1 = --87.2~ l = 0.0762 m. 

Figure 1 gives the dependences X(0 o) for w = 1.5"103 sec -1 (curve 1) and co = 2.035"103 sec -1 (curve 2). We 

denote  the extremal values of )t o on the curve MOo): X~(k = 1, 2, 3, 4) as maxima;  X~(k = 1, 2, 3) as minima.  For  curve 

1, X] > X~ ; for curve 2, Xsl > X~. The presence of several maxima on the curve MOo) attests to the existence of several 
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stable (sections of  a monotonic  rise) and unstable (section of a monotonic decrease) states. These states are determined 
by the points of  intersection of  the straight line X = const with the curve MOo). The realization of  one state of another 

depends on the initial condit ions of  the unsteady-state problem. In many situations, there is a possibility of  a transition 
from one state to another. The case where the straight line X = const lies above the curve MO o) corresponds to thermal 

instability. With a zero initial condition, the critical value X, of  the parameter  X is the greatest o f  the values of X~. With 

a nonzero initial condition, X, depends on the position of  the point  (0 0 , X); the criterion of  thermal instability is the ab- 

sence of a branch of  the dependence X(0 o) to the right of  this point ,  

The dependences X~ are shown in Fig. 2, where the continuous lines correspond to maxima of  the dependences 
MOo), and the dashed lines to minima. In the range of frequencies 0 < ~0 ~ 0~+ there exist four stable states; with 

(o+ ~ (o ~ (o~, three; with (% ~ (o ~ (oi, two; with co > co4, one. In the region (ol ~ (o ~ (o~ there is a possibility of  a 

transition from the first stable state to the second (with X > Xsx); in the region o)3 < (o < (o4 , from the second stable 

state to the fourth (with X > X~). In the range 0 ~ <  ( o ~  (ol '~, ---- ~ ,  for (o~ ~ (o ~ c% ~.  = ~ .  , for (o > o)3 ~,  = ~ .  

With X > X,, there is thermal instability. 

Let us investigate the dependence of the temperature of the beam on the frequency for the subcritical thermal 
states ;k < X.. Curves of  0o(eo) are illustrated in Fig. 3 for X = 0.289 (1) and X = 0.42 (2), and in Fig. 4 for X = 0.66, 

where the continuous lines correspond to stable branches of  the curves of  MOo) , and the dashed lines to unstable branches. 

Curves 1 in Fig. 3 is characteristic in that  the value of  X = 0.289 lies in the region of change in Xil (co). With a fixed value 

of co, a point  of  the section 0 - I  determines the first stable state, and a point  of  the section I I I - I V  or V I - V I I ,  the second 

stable state. With a change in co, there is a jump from point  I to point  II, as well as from points IV and VII, respectively, 
to points V and VIII. 

For  curve 2 in Fig. 3, it  is significant that the straight line X = 0.42 lies above the curveXil(~0). This leads to a situation 

in which, with an increase in co, with satisfaction of the condit ion X] < 0.42, there is a jump from the point  IX on the 

first stable branch to the point  X on the second stable branch X I - X I I ,  while, with a decrease in co, there is no reverse jump 
from the second Stable branch to the first. 

The dependence 0o(U~) in Fig. 4 is one of  the most interesting cases, where the straight line X = const intersects all 

the curves )t o (co), with the exception of  Xi 1 (~o). For  this case, there are two characteristic jumpwise transitions from the 

lower branches to the upper  (from points I and III, respectively, to points II and IV), and two jumps from the upper 
branches to the lower (from points X and XIII, respectively, to points XI and XIV); if 0 o is determined by points VIII, 
IX, or XII, then, with a decrease in co, there is thermal instability. 

The change in the amplitude of  the stress in the beam with the frequency is analogous to the change in the 
temperature. 

The results obtained show that the subcritical dynamic behavior of a viscoelastic body, subjected to cyclical loading, 
is analogous to the behavior of  a nonlinear mechanical system with a mild characteristic. 

4. The effect of  the amplitude dependence of the complex modulus on the thermal behavior of viscoelastic bodies 
will be studied using the fully established vibrations of  a spring-beam with a length I. At  its upper end, there is attached a 
load of  mass M, whose displacement we denote by x~ = x2e ,~,t , while the lower end is subjected to a given kinematic per- 

turbat ion zl  ----- z~e~'t. 

The equation of  motion for the mass has the form 

(• - -  (o"M)~---- (o2Mffl, (4.1) 

where ~ = (x~ - -  x ~ ) / l  is the complex deformation;  u l  = x~/ l ;  E*  = E*I "-~ iE~ is the complex Young modulus (here 
~* * ~,2 = Ea,~ ((0, ~[~, T),I~ ~ = ~ + e~)~ is a numerical parameter, depending on the form of the beam. 

The natural frequency is determined from the equality 

�9 hE ~ - -  o)~M = 0, (4,2) 

where E ~ = E~ ((%? 0, To). Analogously E ~ ----- E~ ((oo, 0, To). 

We take the expressions for E*2 in the form 

EI,~ o 

where 
(4.3) 

I,,~ (%, To) = t;  (Pl.~ (0)  = 0 .  

The equation of  the energy balance for the steady-state thermal state under conditions of  conductive heat transfer 
with the surrounding medium at the lateral surface and insulated ends has the form 

T* -- t + ~h(~, T*)[t -k %(l;'?)i[~ff, (4.4) 
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where 

T *  = ( T  - -  T~)I(To - -  Tz); y. = E ~  - -  Tz); ~ = a)/coo; 

To and Tt 

are the initial and reference temperatures; % is the heat-transfer coefficient; A is the heat equivalent of  mechanical work; 
P and S are the perimeter and area of  the cross section of  the beam. 

Separating the real and imaginary parts in (4.1), taking account of  (4.3), we find 

h(A) [1 + (h(1~l ~) 1~ - -  8[~(A) [t -t- (p~(~[~) ]sz - -  ~--st = ~2u~z, 
(4.5) 

/ l (A)[ i  + r + 6h(A)[l + %(-1~12)1el - ~ - e a  ---- "~2u12 , 

-where 6 = E~(~o ,  To)/E~ To); ult = xz t / l ;  uv~ = x z J l ;  (A) = (~, T*) Relationships (4.4), (4.5) form a closed 

system of equations for determination of  the functions e~, %, and T*. 

With a numerical realization, it was assumed that 

EI.~* = 4q'~+ ~ ~o-~(r-- Tz) -v i + ~ a r c t g ? t . ~ ( e ~ +  e~ 

where el, % [5, 7, 71, 7~, cq, a~ are constants of the material. 

The two-parameter function standing in square brackets gives close to linear (oq,2 > 0) and mild (o~1,2 < 0) 

characteristics and makes possible a quantitative description of the amplitude dependence o f  a broad range o f  materials. 

Figure 5 shows the effect of the dependence of  the Young modulus on the amplitude of the deformation on the 

temperature• characteristics with?~,~= t0, l~l~ ----- t00, ~ = (~/~)Z/~ul I = 4. The values of  c 1, c~, ~3, % To, T z are 

given in Sec. 3. For curves 1-4, the values of  al.2(czz = cz~) are equal, respectively, to 0, 1, 10, -1 .Curve  1 illustrates 

the case of  an amplitude-independent Young modulus; curves 2, 3 correspond to almost linear characteristics, and curve 4 
to a mild characteristic. As was to be expected, the total nonlinearity, being the result of  the superposition of  mechanical 
nonlinearity, due to the dependence of the Young modulus, and nonlinearity due to thermomeehanical connectedness, is 
of the mild type. 
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